
Journal of Computational Physics 229 (2010) 221–232
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
Short Note

On the dissipation mechanism of upwind-schemes in the low Mach
number regime: A comparison between Roe and HLL

Felix Rieper
Institut für Atmosphäre und Umwelt, Goethe-Universität Frankfurt, Altenhöferallee 1, D-60438 Frankfurt am Main, Germany

a r t i c l e i n f o a b s t r a c t
Article history:
Received 27 July 2009
Received in revised form 25 September
2009
Accepted 30 September 2009
Available online 12 October 2009

PACS:
47.11.Df
47.11.�j
47.15.G�
47.15.km

Keywords:
Incompressible and compressible flow
Euler equations
Low Mach number flow
Roe scheme
HLL
Numerical dissipation
Asymptotic analysis
0021-9991/$ - see front matter � 2009 Elsevier Inc
doi:10.1016/j.jcp.2009.09.043

E-mail address: rieper@iau.uni-frankfurt.de
It is well known that standard upwind schemes for the Euler equations face a number of
problems in the low Mach number regime: stiffness, cancellation and accuracy problems.
A new aspect of the accuracy problem, presented in this paper, is the dependence on the
type of flux solver: while the accuracy of the HLL scheme massively decreases for
Ma! 0 on a given triangular mesh, the Roe scheme remains accurate, i.e. flows of arbi-
trarily small Mach numbers can – at least in principle – be simulated on a fixed triangular
mesh. We give an asymptotic analysis of this phenomenon and present a number of
numerical results.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Schemes, originally designed to calculate compressible flow, encounter three problems in low Mach number flow. Firstly,
the speeds of acoustic waves and flow phenomena are of different orders of magnitude – their ratio is measured by the Mach
number. Low Mach numbers slow down the calculation of phenomena on the time scale of the flow such as heat or water
transport (stiffness problem). Secondly, the pressure variable has to accommodate a constant background pressure of order
Oð1Þ and the physically relevant pressure variations of order OðMa2Þ, which leads to numerical round-off errors (cancellation
problem). And thirdly, for stability reasons, upwind schemes introduce artificial viscosity, which depends on the Mach num-
ber. In certain settings this can cause the truncation error to be Oð1=MaÞ, i.e. to grow with decreasing Mach numbers on a
given mesh, and thus preventing the numerical solution to approximate inviscid, incompressible flow (accuracy problem).

The cancellation problem can be avoided by working only with the fluctuation quantities introduced in the wave propa-
gation approach by Leveque [1]. This approach was applied to low Mach number flow by Sesterhenn et al. [2].

To overcome the stiffness and accuracy problem in steady flow simulations a variety of time-derivative or flux precondition-
ing techniques have been developed and applied to compressible (and incompressible) solvers for the inviscid flow
. All rights reserved.
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equations, such as Turkel’s approach, [3,4], or the characteristic time stepping approach by van Leer et al. [5]. The stiffness is
reduced by (almost) equalising the propagation speeds of the different waves for Ma! 0, which accelerates the convergence
to steady state. At the same time, the artificial viscosity is tuned correctly for all characteristic waves and thus the accuracy
problem is circumvented. Preconditioning in the context of viscous flow was dealt with by Choi and Merkle [6]. They report
on the absence of the accuracy problem down to Ma ¼ 10�6 for their preconditioning methods, which are implemented on
grids with quadrilateral cells.

The accuracy problem for transient flow was explicitly addressed by Guillard and Viozat [7]. Their asymptotic analysis of
the Roe scheme explains the appearance of a pressure term of wrong order as Ma! 0 on Cartesian grids. They propose a vis-
cosity–matrix preconditioning to fix the problem.

It is worth mentioning that Discontinuous Galerkin (DG) schemes do not show the accuracy problem as much as finite
volume schemes as shown in [8]. Nevertheless, Bassi et al. show that preconditioning improves accuracy and efficiency of
DG schemes in the low Mach number regime [9].

Thornber et al. [10] show that there is a one-to-one relation between dissipation of kinetic energy and increase in entro-
py. Their analysis reveals an unphysical entropy production of Godunov-type schemes at low Mach numbers related to the
jumps at the cell interfaces. The aim to minimise these jumps is achieved with an improved reconstruction method pre-
sented by Thornber et al. [11]. A fifth-order in space reconstruction is changed in a way so that the jump in the normal com-
ponent of the velocity in the Riemann problem is reduced. The approach results in a MUSCL scheme capable of calculating
low Mach number flows on Cartesian meshes.

Despite the advances attained in the past, simulating low Mach number flows remains a challenge and still has open
questions, such as: how to overcome the stiffness while maintaining time accuracy and computing efficiency; and can
the reconstruction fix for low Mach number flows presented in [11] be applied to unstructured grids and to second-order
reconstructions widely used in practice?

An interesting property of first-order Godunov-type schemes on triangular meshes is the absence of these jumps in the
normal velocity component. Therefore, these schemes do not show the accuracy problem at low Mach numbers on triangular
finite volume cells. This effect is demonstrated and proved with an asymptotic analysis in two dimensions by Rieper and
Bader [12], and generalised by Guillard [13].

The failure of certain flux solvers such as HLL even on triangular meshes initiated the analysis presented here. We com-
pare the dissipation rate of the individual characteristic waves for two common flux solvers, Roe and HLL. In general, only a
certain class of solvers, which resolve the contact waves explicitly, have Mach-number independent dissipation of the con-
tact wave and are thus able to approximate low Mach number flow. In Section 2 a characteristic analysis is done for the Roe
scheme. Section 3 is dedicated to the HLL scheme and a generalisation of the approach for arbitrary flux solvers is given in
Section 4. Numerical results corroborating the analysis are given in Section 5.

1.1. Governing equations

The 2D-Euler equations in conservation form are
qt þ fðqÞx þ gðqÞy ¼ 0;
with
q ¼

q
qu

qv
qe

2
6664

3
7775; f ¼

qu

qu2 þ p

quv
uðqeþ pÞ

2
6664

3
7775; g ¼

qv
quv

qv2 þ p
vðqeþ pÞ

2
6664

3
7775;
with density q, velocity ðu;vÞT , total specific energy e and pressure p. To close the equations, thermodynamic relations are
needed. We use the perfect gas law p ¼ ðc� 1Þqe, with the adiabatic index c and e ¼ e� 1

2 ðu2 þ v2Þ as internal specific
energy.

In this study we focus on the one-dimensional behaviour of numerical schemes and therefore assume only plane waves –
parallel to the y-axis without loss of generality – so that the 2D-equations collapse to a one-dimensional problem given by
qt þ fðqÞx ¼ 0: ð1:1Þ
Note, that q and f still depend on two velocity components: the normal velocity u and the transverse velocity v, so that shear
waves are possible. In the following we analyse the numerical approximation of this equation and refer to it as the one-
dimensional model case.

System (1.1) can be (locally) transformed using the right eigenvectors ri of the Jacobian A ¼ df= dq with the transforma-
tion matrix R ¼ ½r1; . . . ; r4� and its inverse R�1 ¼ L ¼ ½l1; . . . ; l4�, to obtain the characteristic form of the Euler equations
@w
@t
þK

@w
@x
¼ 0;
where the characteristic variables are given by
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dw1 ¼
1

2a2 dp� q
2a

du; ðleft� running acoustic waveÞ

dw2 ¼ dq� dp
a2 ; ðentropy waveÞ

dw3 ¼ qdv; ðshear waveÞ

dw4 ¼
1

2a2 dpþ q
2a

du: ðright� running acoustic waveÞ
2. The Roe scheme

The numerical truncation error of an upwind scheme is twofold, originating from temporal and spatial discretisation. In
this study we focus only on the numerical dissipation introduced by the flux solver and, therefore, we only study the semi-
discrete equations.

2.1. Spatial discretisation

The Roe scheme [14] applied to the one-dimensional model case (1.1) can be written in semi-discrete form as
d
dt

qi ¼ �
1
Dx
ðfRoe

iþ1=2 � fRoe
i�1=2Þ; ð2:2Þ
with the numerical flux function
fRoe
iþ1=2 ¼

fðqiÞ þ fðqiþ1Þ
2

� 1
2
jbAiþ1;ijðqiþ1 � qiÞ; ð2:3Þ
where bA denotes the Roe matrix for the right state qiþ1 and the left state qi of the Riemann problem. Inserting (2.3) into (2.2),
we obtain the equations of the semi-discrete Roe scheme:
d
dt

qi ¼ �
f iþ1 � f i�1

2Dx
þ 1

2
jbAiþ1;ijðqiþ1 � qiÞ � jbAi;i�1jðqi � qi�1Þ

Dx
: ð2:4Þ
To find the modified equation we expand the first expression on the RHS of (2.4) in a Taylor series
f iþ1 � f i�1

2Dx
¼ fxjxi

þ OðDx2Þ ¼ AðqÞqxjxi
þ OðDx2Þ;
showing the second-order accuracy of the central flux difference. For the second term on the RHS of (2.4) we need an expan-
sion of the Roe matrix. For this purpose we interpret the Roe average qiþ1;i as a deviation Dq of the state qi
qiþ1;i ¼ qi þ Dq;
where the Roe average is defined as
qiþ1;i ¼ hqi þ ð1� hÞqiþ1; with h ¼
ffiffiffiffiffiqi
pffiffiffiffiffiqi

p þ ffiffiffiffiffiffiffiffiffiqiþ1
p :
This can be written in terms of qðx; tÞ to obtain
qiþ1;i ¼ hqðxiÞ þ ð1� hÞqðxi þ DxÞ ¼ hqðxiÞ þ ð1� hÞ½qðxiÞ þ qxðxiÞDxþ OðDx2Þ� ¼ qðxiÞ þ ð1� hÞ½qxðxiÞDxþ OðDx2Þ�:
The weight h itself is a function of qðxÞ and can be expanded in a Taylor series about qðxiÞ:
hðqðxi þ DxÞÞ ¼ hðqðxiÞÞ þ OðDxÞ ¼ 1
2
þ OðDxÞ: ð2:5Þ
Using (2.5) we obtain for the Roe average
qiþ1;i ¼ qðxiÞ þ
1
2
þ OðDxÞ

� �
ðqxðxiÞDxþ OðDx2ÞÞ ð2:6Þ

¼ qðxiÞ þ
1
2

qxðxiÞDxþ OðDx2Þ; ð2:7Þ
so that the deviation Dq between Roe average and inner cell state is
Dq ¼ 1
2

qxðxiÞDxþ OðDx2Þ:
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The Roe matrix expanded in a Taylor series about qi ¼ qðxiÞ is therefore
bAiþ1;i ¼ AðqiÞ þ
@A
@q

Dqþ OðDq2Þ ¼ AðqiÞ þ
@A
@q

1
2

qxDxþ OðDq2Þ ¼ AðqiÞ þ OðDxÞ;
which gives
jbAiþ1;ij ¼ jAðqiÞj þ OðDxÞ ð2:8Þ
for the absolute value of the Roe matrix. We can now substitute (2.7) and (2.8) into the viscosity term
gRoe :¼ j
bAiþ1;ijðqiþ1 � qiÞ � jbAi;i�1jðqi � qi�1Þ

2Dx
;

to obtain
gRoe ¼
1
2
ðjAðqiÞj þ OðDxÞÞðqxjxiþ1=2

þ OðDx2ÞÞ � 1
2
ðjAðqiÞj þ OðDxÞÞðqxjxi�1=2

þ OðDx2ÞÞ

¼ 1
2
jAðqiÞjðqxjxiþ1=2

� qxjxi�1=2
Þ þ OðDxÞ1

2
ðqxjxiþ1=2

� qxjxi�1=2
Þ ¼ 1

2
jAðqiÞjqxxjxi

Dxþ OðDx2Þ:
We can summarise the results in the following modified equation for the semi-discrete Roe scheme:
qt þ AðqÞqx ¼ 1
2 jAðqÞjqxxDx ð2:9Þ
The matrix on the right hand side is called viscosity matrix of the Roe scheme VRoe ¼ jAðqÞj in analogy to the viscosity terms
in the Navier–Stokes equation. Note that, by derivation, the Roe scheme satisfies this equation to second order accuracy, see
also Kröner [15].

2.2. Characteristic form

Why is it absolutely essential to work in characteristic variables? Simply said, because, for hyperbolic equations, infor-
mation travels along characteristics and upwind schemes (should) add artificial viscosity on the characteristic variables
according to the characteristic speeds. The pressure, for example, is transported with flow velocity u in an entropy wave
and, in this wave, it should be damped proportional to juj ¼ Oð1Þ. In an acoustic wave, however, the pressure is transported
with the sound speed a and should be damped proportional to jaj ¼ Oð1=MaÞ. If we consider the transport of pressure as a
whole, i.e. in the primitive form of the equations, we are not able to see, which part of the pressure belongs to an entropy,
and which to an acoustic wave and, consequently, we cannot assess whether the corresponding damping is of the right order
of magnitude. For this reason, we want to analyse the artificial viscosity on the individual characteristic waves and derive the
characteristic form of the modified equation.

Let r1; . . . ; r4 be the right eigenvectors of the Jacobian A ¼ df=dq at the state qðx; tÞ with the eigenvalues
k1 ¼ u� a; k2 ¼ u; k3 ¼ u; k4 ¼ uþ a:
We apply the transformation matrices R ¼ ½r1; . . . ; r4�T and R�1 to the modified Eq. (2.9)
R�1qt þ ðR�1ARÞR�1qx ¼
1
2
ðR�1jAjRÞR�1qxxDx
and, using the relations jAj ¼ RjKjR�1 and dw ¼ R�1dq, we obtain the modified equation in characteristic variables
@

@t
wk þ kk

@

@x
wk ¼

1
2
jkkj

@2

@x2 wkDx: ð2:10Þ
We want to compare the magnitudes of physical convection with artificial dissipation given by the truncation error on the
RHS of (2.10). For this purpose we scale the equation with jkkj, so that the convection term is Oð1Þ:
1
jkkj

@

@t
wk þ rk

@

@x
wk ¼

1
2
@2

@x2 wkDx; ð2:11Þ
where rk ¼ kk=jkkj ¼ �1, depending on the sign of the propagation velocity. Interestingly, the truncation error for all charac-
teristic waves,
sk ¼
1
2
@2

@x2 wkDx ¼ OðDxÞ; ð2:12Þ
is independent of Ma as Ma! 0. We therefore conclude: the one-dimensional analysis of the dissipative behaviour of the
Roe scheme indicates that the accuracy, given by the truncation error, is independent of the Mach number. If it were not
for the cancellation error due to round-off, the Roe scheme could calculate (with a constant accuracy) flows on a fixed mesh
at any Mach number, no matter how small.
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2.3. Temporal discretisation

Thornber et al. show in Ref. [10] with numerical experiments that a change of order of the temporal discretisation has no
influence on the dissipation rate of kinetic energy for decreasing Mach numbers. Indeed in [16] the author shows that an
explicit first-order temporal discretisation of the Roe scheme does not affect the Mach-number independence of the trun-
cation error. This can be seen from the fully-discrete modified equation for a characteristic wave w given by
@

@t
wþ k

@

@x
w ¼ 1

2
jkjDxð1� cÞ @

2

@x2 w; ð2:13Þ
with corresponding CFL number c ¼ kDt=Dx. This is analogous to the modified equation of the standard upwind method for
the linear wave equation derived in [1]. Due to the small time steps Dt ¼ OðMaÞ the CFL number for the entropy or shear
wave also satisfies
ccontact ¼ OðMaÞ;
so 1� ccontact � 1 and the additional factor in (2.13) compared to the semi-discrete modified Eq. (2.11) disappears. This ex-
plains why the dissipation rate for contact waves is not notably influenced by the temporal discretisation for decreasing
Mach numbers. The same argument holds for other flux solvers so that we restrict ourselves to a semi-discrete analysis
in the following.

3. The HLL scheme

In this section we analyse the behaviour of the two-wave Riemann solver by Harten, Lax and van Leer (HLL) [17] in the
low Mach number regime for the one-dimensional model case. HLL is known for its dissipative behaviour but, for the first
time, asymptotic expressions for the dissipation terms in characteristic variables for Ma! 0 are derived here.

3.1. Spatial discretisation

The first-order HLL scheme in semi-discrete form is given by
d
dt

qi ¼ �
1
Dx
ðfHLL

iþ1=2 � fHLL
i�1=2Þ;
with the numerical flux function as given in [18,19]
fHLLðqR;qLÞ ¼
fðqRÞ þ fðqLÞ

2
� 1

2
SR þ SL

SR � SL
ðfðqRÞ � fðqLÞÞ þ

SRSL

SR � SL
ðqR � qLÞ; ð3:14Þ
under the assumption that
SL 6 0 6 SR; SL – SR;
which is justified in the low Mach number regime. Here SL and SR are wave speeds that are faster than the left- and right-
running signal speeds in the underlying Riemann problem and have to be estimated adequately. If there is a Roe-MatrixbA ¼ bAðqR;qLÞ for this Riemann problem we can write fðqRÞ � fðq LÞ ¼ bAðqR � qLÞ. Substituting this into Eq. (3.14) we obtain
fHLLðqR;qLÞ ¼
fðqRÞ þ fðqLÞ

2
� 1

2
SR þ SL

SR � SL

bAðqR � qLÞ þ
SRSL

SR � SL
ðqR � qLÞ
for the numerical flux of the HLL scheme. We assume qðx; tÞ to be a smooth function. Following the approach of Section 2 we
obtain for the modified equation of the HLL scheme:
qt þ Aqx ¼
1
2

VHLLqxxDx;
where
VHLL ¼
SR þ SL

SR � SL
jAðqÞj � 2

SRSL

SR � SL
I þ OðDxÞ
is the viscosity matrix of the HLL scheme with the Jacobian A(q) and the identity matrix I as presented in [18,19].

3.2. Characteristic form

The viscosity matrix VHLL has the same eigenvectors r1; . . . ; r4 as the Jacobian A ¼ df=dq, so that we can transform the
modified equation using R ¼ ½r1; . . . ; r4�
R�1qt þ ðR
�1ARÞR�1qx ¼

1
2
ðR�1VHLLRÞR�1qxxDx;
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into a (locally) decoupled system with the characteristic variables dw ¼ R�1dq:
wt þKwx ¼
1
2

KHLLwxxDx; ð3:15Þ
where K ¼ diagðu� a;u;u; uþ aÞ is the matrix of eigenvalues and
KHLL ¼ R�1 SR þ SL

SR � SL|fflfflfflffl{zfflfflfflffl}
a

jAj � 2
SRSL

SR � SL|fflfflfflfflffl{zfflfflfflfflffl}
d

I

0
BB@

1
CCAR ð3:16Þ
is the characteristic form of the viscosity matrix VHLL. It can be simplified using the relation jAj ¼ RjKjR�1 and the identity
R�1IR ¼ I to obtain
KHLL ¼ ajKj � dI ¼ diagðaju� aj � d;ajuj � d;ajuj � d;ajuþ aj � dÞ ¼: diagðl1; . . . ;l4Þ;
where the li can be interpreted as numerical viscosity coefficients for the individual characteristic waves. In many implemen-
tations of the HLL scheme the wave speeds satisfy the asymptotic equalities
SR � uþ a

SL � u� a
where � has the meaning asymptotically equal, i.e. their ratio converges to a constant for Ma! 0. With this assumption we
find for a
a ¼ SR þ SL

SR � SL
� 2u

2a
¼ Ma ð3:17Þ
and for d
d ¼ 2
SRSL

SR � SL
� ðu� aÞðuþ aÞ

a
;

which can be written as
d � ðMa� 1Þðuþ aÞ ð3:18aÞ
or equivalently as
d � ðMaþ 1Þðu� aÞ: ð3:18bÞ
The coefficient of artificial viscosity l1 for the left-running acoustic wave satisfies
l1 ¼ aju� aj � d � Maju� aj � ðu� aÞðMaþ 1Þ � ð2Maþ 1Þða� uÞ: ð3:19Þ
Eq. (3.15) can be written in a form, where the convective part is scaled to Oð1Þ for each individual characteristic wave:
1
jkij

@

@t
wi þ ri

@

@x
wi ¼

1
2

li

jkij
@2

@x2 wiDx; ð3:20Þ
where again ri ¼ ki=jkij ¼ �1. The truncation error for the left-running acoustic wave w1 is given by
s1 ¼
1
2

l1

jk1j
@2

@x2 w1Dx: ð3:21Þ
Using the fact that jk1j ¼ ju� aj ¼ a� u for Ma < 1, and inserting (3.19) in (3.21), this can be simplified to
s1 ¼
1
2
ð2Maþ 1Þ @

2

@x2 w1Dx ¼ OðDxÞ as Ma! 0;Dx! 0: ð3:22Þ
The analogous is true for the truncation error of the right-running acoustic wave, s4. Eq. (3.22) implies: the HLL scheme re-
solves acoustic waves accurately for Ma! 0.

For contact and shear waves, with jk2;3j ¼ juj, the coefficient of artificial viscosity is
l2;3 ¼ ajuj � d � Majuj � ðMa� 1Þðuþ aÞ;
so that we obtain for the truncation error s2 ¼ s3:
s2 ¼
1
2

l2

jk2j
@2

@x2 w2Dx ¼ 1
2

Majuj � ðMa� 1Þðuþ aÞ
juj

@2

@x2 w2Dx ¼ 1
2

Ma� ðMa� 1Þð�1þ 1
Ma

� �
@2

@x2 w2Dx

� 1
2
@2

@x2 w2
Dx
Ma
¼ O

Dx
Ma

� �
as Ma! 0: ð3:23Þ
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Compared to the physical transport, scaled to Oð1Þ, the truncation error, and with it the artificial dissipation, increases like
1=Ma for Ma! 0. This behaviour occurs equally for entropy and shear waves and explains the massive loss of accuracy for
low Mach number calculations with the HLL scheme.

4. Generalisation

The analysis presented is limited to specific flux solvers such as Roe and HLL because the matrix of artificial viscosity and
the Jacobian can be diagonalised simultaneously so that the dissipation of each characteristic wave becomes evident. Most
schemes do not have this property making a diagonalisation unfeasible. With the following trick a full diagonalisation can be
circumvented: we insert into the flux difference a single characteristic wave and obtain a modified equation for this char-
acteristic. To analyse the dissipative behaviour on a shear wave we let the following quantities constant:
ρ

Fig. 1.
indepen
u ¼ const; p ¼ const; q ¼ const;
only the transverse velocity v is allowed to change between neighbouring cells, i.e.: v i – v iþ1.
In a similar fashion, a special entropy wave – given by a density jump – can be analysed. The flux solver should be ana-

lysed with constant data
u;v ¼ const; p ¼ const
and a density q which is allowed to jump: qi – qiþ1.
Using this analysis it was shown in [16] that HLLC and AUSM dissipate shear waves independently of the Mach number.

The flux vector splittings by van Leer and Steger–Warming have a dissipation rate proportional to 1/Ma leading to a failure of
these schemes for low Mach number flows.

5. Numerical results

5.1. One-dimensional flow

A one-dimensional analysis is, of course, best verified with one-dimensional experiments. Our goal is to visualise the dis-
sipative behaviour on simple waves, i.e. with a jump in a single characteristic, for various Mach numbers Ma ¼ 10�1;10�2

and 10�3. The Mach numbers are enforced by adapting the flow velocity according to u ¼ aMa ¼
ffiffiffiffiffiffiffiffiffiffiffi
cp=q

p
Ma, while keeping

the background pressure p0 and density q0 constant. The adiabatic index c is set to 1.4 throughout our calculations. Forward
Euler in time is used but an implicit method could be used as well. The calculations are stopped after the signal has passed
0.1 of the flow domain [0,1]. At the boundary we use Neumann boundary conditions.

5.1.1. Entropy wave
We set up a simple entropy wave with an initial density jump at t0 ¼ 0, given by qðx < 0:5Þ ¼ 1:0 and qðx P 0:5Þ ¼ 0:5,

see Fig. 1. Note that for the signal to pass Dx ¼ 0:1 the number of time steps Dt increases for lower Mach numbers and, at the
same time, the size of Dt decreases. For HLL, in agreement with (3.23), the dissipation of the signal increases with lower
Mach numbers. For Ma ¼ 10�3 the signal is completely smeared out. Shown in the right of Fig. 1 is the result for the Roe
scheme. In agreement with (2.12), the dissipation is independent of the Mach number.
x
-0.2 0 0.2 0.4 0.6 0.8 1 1.20.4

0.5

0.6

0.7

0.8

0.9

1

1.1

t = 0
Ma = 0.1
Ma = 0.01
Ma = 0.001

HLLHLL

x

ρ

-0.2 0 0.2 0.4 0.6 0.8 1 1.20.4

0.5

0.6

0.7

0.8

0.9

1

1.1

t = 0
Ma = 0.1
Ma = 0.01
Ma = 0.001

Roe

Dissipation of a density jump. Left (HLL): The smearing strongly depends on the Mach number. Right (Roe scheme): the smearing is small and
dent of the Mach number.
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5.1.2. Shear wave
In view of two-dimensional flow, we introduce a transversal velocity component v into the flux solvers but maintain the

one-dimensional setting. For the shear wave we set vðx < 0:5Þ ¼ uref ¼
ffiffifficp Ma and vðx P 0:5Þ ¼ 0:5uref ¼ 0:5

ffiffifficp Ma. In Fig. 2
the velocity is scaled by uref to fit all data into a single diagram. The results are completely analogous to the entropy wave,
again in agreement with the analysis.

5.1.3. Acoustic wave
We set up a left- and a right-running acoustic wave with an initial jump of the ’normal’ velocity u given by uðx < 0:5Þ ¼

uref ¼
ffiffifficp Ma and uðx P 0:5Þ ¼ 0:9uref , see Fig. 3. The pressure pulse is expected to be OðMaÞ, therefore we plot ðp� p0Þ=Ma.

The exact solution is a quasi linear acoustic pulse. The dissipation of the signal by HLL and Roe is independent of the Mach
number, which agrees with (3.22) and (2.12), respectively.

5.2. Two-dimensional flow

In [12] the authors have shown, that a prerequisite for an upwind scheme to well approximate low Mach number flow is
the use of triangular finite volume cells – no matter whether the grid is structured or unstructured. We therefore compare
the behaviour of HLL and Roe scheme on a triangular grid and investigate how the numerical Reynolds numbers affect two-
dimensional flow.

5.2.1. Potential versus creeping flow
We use the flow around a cylinder as test case since an incompressible potential flow solution is known, i.e. we have an

analytical reference solution for Ma! 0. The initial conditions are set uniform to q0 ¼ 1:0; u0 ¼ ðu0;0ÞT ; p0 ¼ 1:0, where the
absolute value ku0k ¼

ffiffifficp Ma0 of the initial velocity is set to meet the prescribed initial Mach number Ma0, and c is the adi-
abatic index set to 1.4 throughout our calculations. The exact solution at infinity is assumed uniform
v/
v r
ef

Fig. 2.
is smal
q1 ¼ 1:0; u1 ¼ ðu1;0ÞT ; p1 ¼ 1:0:
In the far-field boundary conditions this solution is assumed to be a good approximation of the solution at the outer boundary.
These values are prescribed in the ghost cells.

For the body-fitted, unstructured grid we use about n/ ¼ 150 cells along the circumference and 10.000 in total. For the
boundary at the cylinder surface we use solid wall boundary conditions, i.e. we copy all (primitive) variable values from
the outer most cells into the neighbouring ghost cells, except for u which, in addition, gets the opposite sign in the ghost
cell. We use an explicit forward Euler, which turns out to be rather efficient, compare Section 5.2.5. Any implicit scheme
could be used with increasing time step sizes to accelerate the convergence to steady state.

In Fig. 4 we see the contour lines of the dynamic pressure pdyn ¼ p� p0 for an inflow Mach number of M ¼ 10�6. The first-
order Roe scheme (top right) approximates ideal potential flow (top left) very well concerning the absolute value of the pres-
sure as well as the distribution of the isolines with the typical cos2-characteristic: two stagnation points with high-pressure
and two low-pressure regions above and under the profile.

The first-order HLL scheme produces a pressure field (bottom right) that is about 105 times too large and has a cosine-
characteristic: an high-pressure region in the front and a low-pressure region in the wake of the profile. For comparison,
an analytical solution to creeping or Stokes flow is presented at the bottom of Fig. 4.
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Fig. 3. Dissipation of an acoustic wave.
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5.2.2. Numerical Reynolds number
The astonishing resemblance between Stokes flow and HLL at low Mach numbers suggests the following analogy: Stokes

flow is characterised by a vanishing Reynolds number, Re � 0, which is defined as
Re ¼magnitude of convection
magnitude of viscosity

: ð5:24Þ
There is no physical viscosity in the Euler equations but, as truncation error in the modified equations, there is artificial vis-
cosity, which can be compared to the convection of the characteristic variables. We therefore define the numerical Reynolds
number for the various characteristic quantities as
Renum ¼
magnitude of convection

magnitude of the truncation error
: ð5:25Þ
Interestingly, the numerical Reynolds number is Oð1=DxÞ for all characteristic waves for the Roe scheme and for the acoustic
waves for HLL. Thus, for Dx ¼ const we obtain Renum ¼ const as Ma! 0, i.e. a weakly dissipative behaviour of the scheme,
depending on the (fixed) resolution. In contrast, shear and entropy waves in the HLL scheme are characterised by
Renum ¼ OðMa=DxÞ, i.e. on a fixed mesh and decreasing Mach number Renum ! 0, which is highly viscous – comparable to
Stokes flow of fluids like honey or tar.

5.2.3. Magnitude of pressure fluctuations
In the literature [7,20] it is stated that upwind schemes can produce pressure fluctuations
pfluc ¼
pmax � pmin

p0
ð5:26Þ
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of the wrong order OðMaÞ. We have given a criterion for this failing behaviour in [12] (triangular finite volume cells) as well
as in this paper and present some numerical evidence. In Fig. 5 the pressure fluctuations for Mach numbers from Ma ¼ 10�1

down to Ma ¼ 10�7 for the first-order Roe (left) and HLL scheme (right) are shown. The results were obtained for a cylinder
and a NACA0012 grid, both with about 10.000 grid cells. The pressure field produced by the Roe scheme is directly linked to
the kinetic energy (Bernoulli’s Principle) and consequently is proportional to Ma2. The HLL scheme produces pressure fluc-
tuations that are OðMaÞ – in analogy to Stokes flow, where the pressure field originates in viscous forces that are proportional
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to the velocity, i.e. the inflow Mach number. These diagrams were validated for grids with 300 up to half a million cells with-
out qualitative change of p-Ma-dependency.
5.2.4. Entropy transport
In ideal subsonic flow there is no entropy production, but numerical dissipation of momentum creates entropy in the

solution – predominantly in shear layers near the stagnation points. The amount of entropy produced is therefore a measure
for the dissipative behaviour of the numerical scheme. In Fig. 6 the entropy distributions in the steady state – both fields with
the same scaling – are given for the first-order Roe (left) and HLL scheme (right). Comparing the magnitude of entropy con-
firms that the Roe scheme is less dissipative; but more importantly: the Roe scheme maintains its convective or upwind
character while the HLL scheme transports the entropy isotropically as in heat conduction. This numerical dissipation-dom-
inated transport has its physical counterpart in creeping flow, where the convective terms are neglected. This also agrees
with the notion of numerical Reynolds number: Renum ! 0 for Ma! 0 for the entropy wave in the HLL scheme.
5.2.5. Efficiency study
There is no doubt that phenomena on the time scale of the flow, such as the transport of entropy, humidity or a chemical

substance are practically frozen with an explicit upwind scheme in low Mach number flow, since the number of time steps
needed increases like Oð1=MaÞ. In this case a preconditioning technique as proposed by Turkel [3] or van Leer et al. [5] is
indispensable.

On the other hand, acoustic phenomena are calculated in Oð1Þ time steps. Interestingly, the adaption of the flow field to a
perturbation such as a moving obstacle happens on the acoustic time scale. The following numerical experiment serves to
measure the time from the sudden onset of fluid motion (uniform initial conditions) to the steady state. Once the acoustic
waves have left the domain, a steady pressure field settles around the cylinder. The passed CPU time (Pentium 4 with
S
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3.0 GHz) till convergence is presented in the left of Fig. 7. On the right, a similar diagram shows the number of time steps
needed. Interestingly, the time for the pressure field to settle down is of the order of the logarithm of the Mach number:
tCPU ¼ Oðlog Ma0Þ:
For the class of exterior low Mach number flows around obstacles, such as aerofoils, a standard upwind scheme on a trian-
gular grid (primary cells) is rather efficient. We do not have similar studies for preconditioned implicit or explicit methods,
but it would be interesting to see, whether the classical Roe scheme on triangular cells is competitive. Note, that already for
Ma � 0:1 the flow behaves practically incompressible, see for example [21].

6. Conclusion

We have shown with a one-dimensional analysis that the right amount of artificial viscosity on each individual charac-
teristic variable is a prerequisite for an upwind scheme to approximate low Mach number flow. For this purpose we intro-
duced the notion of numerical Reynolds number of characteristic variables and showed the usefulness of this analogy with a
number of numerical experiments. The results encourage the use of the standard first-order Roe scheme on triangular grid
cells for moderately low Mach numbers. The relation tCPU ¼ logðMaÞ indicates unexpectedly good efficiency for explicit
schemes.

We are aware that the results on their own are rather theoretical, since in practice higher-order schemes, at least of order
2, are common. The question, therefore, is, how can the results presented in this analysis be applied to practical applications.
It is known that for low Mach number flows, Riemann solvers and reconstruction methods cannot be considered separately,
but the interplay between them has to be taken into account – both have to satisfy certain properties. While our analysis has
shown that only certain upwind schemes resolving all characteristic waves are suitable for low Mach number flows, the
analysis presented in [11] made clear that the reconstruction has to be fixed to allow Riemann solvers to produce the right
amount of entropy in low Mach number flow simulation.
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